
SOME TBREE-DIMENSIONAL PROBLEMS OF 
THERMOELASTICITY 

(0 NEKOTORYKH PROSTRANSTVENNYKH ZADACHAKH 

TERMOUPRUGOSTI) 

PMM Vo1.23. No.3, 1959, pp. 456-467 

WITOLD NOWACKI 

(Warsaw) 

(Received 16 February 1959) 

In this paper, thermal stresses are investigated which are caused by the 

action of non-stationary sources of heat, arbitrarily distributed in 

elastic and visco-elastic media. The construction of Green’s functions 

for stresses caused by an instantaneous point source of heat is considered. 

In Sections 1 and 2 the state of stress in absolutely elastic bodies is 

considered and in Section 3, in visco-elastic bodies. 

1.. The state of stress in an infinite elastic medium. As is 

known from the theory of thermal conductivity, the temperature field due 
to the action of an instantaneous point source of heat is described by 

the formula 

8 =4xt, x = h 
CP 

(1-l) 

Here W = Qp c is the quantity of heat received in unit volume in unit 
time, p is the density, c is the specific heat, and h is the coefficient 

of thermal conductivity. lhe function (1.1) is the solution of the equa- 
tion 

vV’-“;; z.zz. +(R)G(t) 

T (R, ho = 0, T(m, t)=O, T(R, oo)=O 

where 6 is the Dirac symbol. 

We consider first the quasi-static problem. ‘lbe equations of the 

theory of elasticity for displacements, if the inertial terms are 

neglected, can be represented in the form 

PVaui + (A -I p) 2 = (3h + +) Uf g 
i 

(i=l, 2, 3) 

(l-2) 

(1.3) 

651 
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A, p are the Lam6 constants, at is the coefficient of thermal expansion. 

We introduce the potential of thermoelastic displacement q!~. ‘Ihis 
potential is related to the displacement by the equaiion [l] 

aTJ ui =a”i (i = 1, 2, 3) (1.4) 

Introducing the function $ into equations (1.3) we reduce the system 

of equations for displacement (1.3) to one equation [ 11 

V”(P = 3,T ( (1.5) 

Knowing the function qS, it is possible according to formulas [ l] to 
determine the stresses 

(1.6) 

where G is the shear modulus, and aii is the Kronecker symbol. 

In a finite body, the function qb at best satisfies only part of the 

boundary conditions; so that to the stresses expressed by the formula 

(1.6), one must add such selected stresses as to satisfy all the bound- 
ary conditions. 

In the problem 

symnetry; we have 

under consideration, we take advantage of spherical 

(1.7) 

oRR = - 2Gf$G, 

The expression (1.1) for the 

transform, can take the form of 

3 +,P=~099=-2G zaR 
( 

(1.8) 

temperature field, by use of the Laplace 
the following Hankel-Fourier integral 

e= & * SI a (a2 + 72+p/x)-1Jo (ar) cos 7 z da dy 
0 0 

0 = fep’T (R, t) dt 
0 

(1.9) 

By use of the Laplace transform, from equation (1.7), taking Q = 1, 
we have 

CD*= -&-L\ a(aZ-/-ya+ ‘)-’ (aa +~2)-1Jo(ar) COST zdady (1.10) 
0 0 
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After carrying out the inverse Hankel-Fourier transform, we obtain 

Hence 

fD*=,&Jexp(-q/$)--1] 

u) 

cp* = +&WE 9 = 4xt, erfz- e-**dy (1.11) 

Knowing the function q5 *, we determine the stresses [ 21 as 

4GA 
.J*RR r= - - )1s. erf+-V$$exP(-z)] 

c 
(1.12) 

u**cp = a*&# = g [ erf$-$!L.(i +y)exp i--$)3 (A=$) 

In Fig. 1 a, b, and c curves of the dependence of T*, Use*, u*++ on 

R are presented for several values of the parameter 8 indicated on the 

curves. 

For R -, 00, at an arbitrary moment t, the stress approaches zero. Also 
for finite values of R, but for t + 00, the stresses u*ij vanish. 

Ihe functions ueRR, u*++., u*oe can be considered as Green’s functions. 

intensxty of the sources of heat distributed in the Let QU’, t) be the 
region c then 

aij (Pt 

In an anal0 gous manner, we have 

For a conti nuous source of heat, we obtain 

t) = \ \\\ Q ($3 t’) g*ij (S, P, t - t’) drdt’ 

(0 0 

(1.13) 

(1.14) 

For a source changing according to a harnanic law 

(1.16) 

If in the equations of motion of the theory of elasticity, the inertial 
terms are not neglected, then in the case considered, with spherical 

symtry, along with the equations (1.7) and (1.81, we obtain the follow- 
ing formulas: 
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Jlere 
g2 = _I_ 

cl* ’ 

c1 is the velocity of propagation of an elastic longitudinal wave, p de- 

signates the density. 
c 

2.4 

Fig. 1 

Proceeding in a similar fashion to the quasi-static case, we obtain 

for 
mm 

a>* = - 2%x 1 \ a (a2 $- y2 + p/x)-’ (a2 + 7” + pau2)-1 coq z da dy = 

0 0 

$0 
e--Ra~ _ ,-R~PX 

=4nx(12pR p - )+-J-a 

Carrying out the inverse transformation, we obtain [3] 
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-i-~xP(-$)erfc(~-~)]+(eap~~-l)ri(t--uj} (1.20) 

where v is the JIeaviside function. 

In the case considered, we obtain different formulas for $**+ t=/'in the 

intervals 0 < t < Ro and t > Ra. Knowing the function +*, according to 

formula (1.18) we obtain the stresses CT*... Tt is easy to show that both 

for R + =, and also for t -+ m, the functjin +* vanishes; and also the 
stresses reduce to zero. 

For t = Ro there is a discontinuity in stress. It is evident that, 

considering $* as a Green's function, it is possible to determine the 

stresses for an arbitrary function Q(F, t). 

We consider the state of stress due to the action of a source of heat 
moving in a straight line with constant speed u. bsignating by [,, t,, 

and C$ stationary coordinates, we assume that the source has an intensity 

W chGging with. time, and moves in an elastic medium along the axis c,. 

The equation of thermal conductivity in this case has the form 

(1.21) 

We choose a new coordinate system x1, x2, and x7, connected with the 

moving source of heat, and parallel to the system [,, t,, s3. Applying 

a linear transformation 

x1= 6- vt, 52 = 62, $8 = E3 

we obtain equation (1.21) in the following form: 

In the case of a source having constant intensity, we have a7'/& = 0. 

We dwell for a while on this quasi-stationary case. 

It is known that in this case we have 

T -‘- e-_.?!_ e-~w(xx+W 
2x2xK (R = (~1' t-x: +x~~)"~, W = Qpc) (1.23) 

Solving the equation 

(I.243 

we obtain, for Q.= 1 



656 llitold Novacki 

T* = & {Ei [- p (z, -I- R)] - III (q + H) ) 

OD 

Ei (-S) = 
s 

g du (s>O) 

8 

Now it is possible, according to formula (l.h), to determine 

stresses u* . ., 
function q5 *‘I 

carrying out the appropriate differentiations of 

(1 .2*-b) 

the 

the 

412 
* =z$[(l + p~)e-@(x:+R)- l] 

323 
*= x$rsK 

! 
(1 i-rR+ 5 > e -W,+R)_ 

PA8 (z1+ W ; 
1 + _-!.!_ 

x1 J,- I< )J 
(1.26) 

( 
KL&!_, and so forth 

Carrying out in the formulas for stress the passage to the limit 
/I + 0 (u + 0), we obtain the well-known formulas for stress due to a 

stationary constant source of heat, 

412 
*_ x,xzK 

-- --p-s 023 
xmK *=_-- 
1rs 

and so forth 

2. llrermal stresses in an elastic half-space. We consider an 

elastic half-space (x, > O), in which an instantaneous source of heat 

acts at the point (0, 0, c3 = [). We assume that the plane n3 = 0 is free 
of stress. Further, we assume that T = 0 for x3 = 0. Here the problem is 

axially-symmetrical, so that cylindrical coordinates can he used to 

describe the system, namely,- r and z. The first two boundary conditions 

* cT:z = 6, T = 0, urz * = 0 for z=O (2.1) 

are satisfied, if in the unbounded elastic space we place at the point 
(0, 5) a positive, and at the point (0, - 5) a negative source of heat. 
Then, in conformity with formula (1. ll), we obtain [ 41 

11J,Z = [r? -1 (z-f [)?I”‘, A _ >z- (2.2) 

As is known, the stresses are expressed through the function +* in 

the following manner: 
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In the plane z = 0, the stress u*'~~ does not vanish. In order that 

the stress o*' (r, 0, t) should reduce to zro, we impose such a state of 

stress that inrghe plane z = 0, the condition should be satisfied 

%z*'(r, 0, 8) + O*"r* ir, 0, t> = 0, o,, *"(r, 0, t) == 0 (2.4) 

We determine the state of stress uij*" -by means of the Love function 

dt 9 satisfying the equation i= 0. 

The function c,!J' is taken in the form 

q” = f(C $- Daz)e-azJo(u!v)du for 2>0 

0 

From the second condition (2.4) it follows that C = -(l - 2y)L). 

Taking into account that 

(2.5) 

p(a, 5, t) = e-+ erfc (%F--&)_eaierfc (F+&) 

we obtain from the first condition (2.4) 

Tn this manner the function I$' is determined, and from it, the state 

of stress uij*, since 
(2.6) 

In this manner 

Qrr *n=GA \ p(a, t, t)ase-az [(2 -az)Jr~(&r) j- (2~ -2 f a~)q]da and. 

0 so forth 

If one assumes that dT/dz = 0 in the plane z = 0, then the stresses 

@ij *’ may be determined by placing instantaneous sources of heat located 
at the points (0, 5) and (0, - 5). In this way, in the plane z = 0 the 

conditions are satisfied urz*' = O and dT/dz = 0. 

We eliminate the stress u *‘(r, 0, t) by adding to it the states of 
stress (r. .+ and u..*", 

ta.5) C- ‘!ZvD shouli'be taken. 
expressed by use of the Love function, whereby in 

formula 
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If < approaches zero, we have the case of a source acting at the 

origin of the coordinate system, that is, in the plane bounding the 

elastic half-space. In this special case we obtain for a continuous 
source of heat 

D(a, t)= f&.(1-2-4) [ l-ccexp(-cc2xt) )/?!-(I -~,),rfc(E$!j] 

(9 = 4st) 

For a steady source of heat, that is, for t + = we obtain 

D (a, t> = FX (1 - 2v) a-3 

We notice that for t + 00 the stresses orZ*(r, z, m) and oZZ*(r, z, Do) 
are equal to zero. 

The stresses ai j* (r, z, t) for a continuous 
presented as 

aij 
*_ - ‘Jij *(“‘-~ij*(l)(r, z, 

where the stresses oij* O)(m) do not depend on ( 

IJ *, and u * we obtain ZZ rZ 

or2 *_ - -- or2 *(I)@, 2, q, oLZ * =_ 

These stresses vanish for t + m, assuming a 
value of t. 

source of heat may be re- 

t) 

time. For the stresses 

- a,,*(i) (r, 2, t) 

maximum for some finite 

We consider the following problems which have importance for technical 

applications. Assume that in a finite region r, located in the plane 

z = 0 which bounds an elastic half-space, the following boundary condi- 
tion for temperature is given: 

T (Xl! x2, 0, t> = f (Xl, 22) 6 (t) (2.7) 

and let T = 0 on the remainder of the surface. We construct a Green’s 
function for this problem. 

‘Ihe temperature field shokd satisfy the 

ozT*_;g = 

and the boundary condition 

differential equation 

0 

as well 

For 

T* (~1, 52, 0, t) = 6 (xl- Ed * (52 - E2)z (I) (2.8) 

as 

T* = 0 at infinity 

the given temperature in the region I’ we obtain (d1’ = “[I “4, ) 



Some three-dimensional problems of thermoelasticity 659 

We determine the Green's function for the axially-symmetric case first, 

solving the equation 

'f32 
( jP 

_+'$ +!&J*_;!gLo (2.10) 

with the boundary condition 

2'* (r, 0, q Z -"*, T* z 0 at infinity (2.11) 

?he solution of equation (2.10) is 

T* (r, z, t) = (3 = 4xt) (2.12) 

Knowing the function T*, one finds +* as the solution of equation (1.5) 

(p* Z - g erfZ---- 
c 

311 

1/B 1/G 
(2.13) 

Once the function $* is known, the stresses a.."' can be determined 

in closed form. For z = 0, the stress D *' vanis es; 'h however the stress 

c7 *' is not equal to zero. Ih 

tiG state of stress u *' 
ere ore _f 

.zz. 
It 1s necessary to superpose upon 

the state of stress u * *# 

of the function +,9 

expressed by means 

bi'fokmulas (2.6). 'Ihe quantitie: C and D encountered 
in the love function (2.5), are fixed by the boundary conditions for z= C, 

=rz *' + q.**N = 0, =zt 
*r' == 0 

From these conditions we obtain 

c=-(I-22r)B7 D(a, t)=(I_2&$?rfcap! 

In the case of the temperature field satisfying equation (2.10), with 

the boundary conditions 

T* (r, 0, t) = z?(t), T* = 0 at infinity 

where the function n(t) is the IIeaviside function, we obtain 

(2.14) 
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We obtain the stresses 0. .+’ from formulas ( 1.61, and the stresses 

U.. *” from formulas (2.6). ti 

&re 

e unc ran 4’ is determined by formula (2.5), f t’ 

c = - D(l -av>, D(a, t> = (I-24 &[I -F(rx, t)] 

P(a, t) If (1 + 2 a2xt) erfc (c$GZ> - 2al/ exp (- c12xt) 

In the special case of a stationary temperature field Ct + ->, the 

stresses arZ* and oXz* are set equal to zero. 

3. The state of stress in visco-elastic media. We consider 

thermal stresses caused by the action of an instantaneous source in an 

infinite medium, for the model of a visco-elastic body suggested by 

Riot [6] and Berry ]?I. IV e extend the relations given by these authors 

to the case of thermal stresses. We have 

The relations given apply to bodies which in the initial moment were 

unstressed. Let the relaxation functions be A(t) and PI $1, which for an 
absolutely elastic body reduce to the Lam6 cunstant. 

We consider first the quasi-static problem, Sbstituting the stress 

0.. into the equilibrium equations, 
f ’ 

which express the stress through tlis- 

p acements, and introducing the potential of thermo-visco-elastic strain 

$ by means of 
aa, 

%= +4 ii - 1, 2, 3) 

we obtain for the function +* by analogy with equation (1.51, the formula 

Fkpressing the relations (3.1) by use of the function C$ and using 
equation (3.2) we obtain 
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ai j (G9 t) = J 2r (t - 4 g ‘c 
0 

( 82 - - bjV2 &qZj ) ‘p (5r, T) Cd?: (i = 1. 2. 3) (3.3) 

We assume that the visco-elastic body was in the initial instant free, 

i.e. unstressed. We carry out in equation (3.2) and the relations (3.31, 

the Laplace transformation, 

f)(z,,p)= ~f9T(xr. t)dt, Q)(& p)= \EM*(zr, t)dt 

0 0 

Cij (q, p) = 5 e-P’(Jij (3~~ 1) A 

obtaining 0 

v20 (a, P) = 3 (P) 8 (G, P) 

and also 
(3.4) 

Cij (zrr p) = 2G (p) (3.5) 

Ihe following designations are introduced: 

8(P) = 
31’ (PI + 211’ (PI 

h’ (PI + 2Er’ (PI at, G (P) = PP’ (P) 

We notice that for an absolutely elastic body, we have the following 

relationships (see formulas (1.5) and (1.6)) 

V2D0 (zr, P) = q (% P) 
C 
a, = ZCQ) (3.6) 

c~;(z~, p) = 2G ( Gj - sij V') Q)"~J-, P) P-7) 

where G is a constant quantity not dependent on the parameter p. 

At this point we introduce the designations +‘and oijo for an abso- 
lutely elastic body. 

From a comparison of (3.4) and (3.6), and also (3.5) and (3.7), it 
follows that 

0 (G, p) = y @>” (G, p>, ci, (zr, p) = G (,T(,) CijO(G., p) (3.8) 
0 

Introducing the functions F(p) and G(p), where** 

F @) = G (PIT+ (P) 

P ’ (3.9) 

l * The functions F(p) and C(p) are assumed in such form as to insure the 

inverse transformation of these functions. 
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after an inverse Laplace transformation, from formulas (3.8) we obtain 

t 

(3.10) 

Ihe expressions derived above permit the determination of the displace- 
ments and stresses in a visco-elastic body by use of solutions obtained 
for an absolutely elastic body. In many cases it will be more convenient 

to determine first the function 

and to arrive with its aid at the stresses 

(3.11) 

(3.12) 

Imt an instantaneous source of heat act at the origin of the coordinate 

system in a visco-elastic medium. We assume that the relaxation functions 
Aft) and p(t) have the same relaxation time 

I. (t) = hoe-cf, k (4 = poe-ef, h’ (P> = SC, P’(P) = j$ (3.13) 

therefore, in conformity with fonnu 

into account, we obtain 

iJ. 1, and taking equation (1.11) 

t 

+ (R, I) = - 4&j 1 e-r(*--;) -&erf -+&C&C =: -4$ fe-*f-A (8, t)] (3A4) 
0 

where 
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We obtain the stresses u . . by formula (3.12). If in the equations of 

equilibrium we take into ac&nt the inertial terms, then along with 

equation (3.41, and the relations (3.51, we obtain the following equations 

and relations: 

&j (Xr, 

We introduce 

relation (3.17) 

fs2 (P) = PI&’ (Pe+ A’ (P)l > 
(3.16) 

P) = 2C(P) ‘A- 
t 

C3*17) 
1 3 

b jVa ‘) 0 (&~j, p) + pp2@ (G, p) 
/ 

the function U’ (x,, P) = C(P) fi (xr, p), whereupon the 
may be given in the form 

&j (Xr, P) = 2 ( &. - 4jV” ) Y (Xr, P) + PP2@ txr? P> (3.18) 
1 I 

Cnnparing equation (3.17) with the corresponding equation for an 

absolutely elastic body, 

V2Q>” (G, P) - P2Q02Q, (G, P> = q+3 (G, P) (3.19) 

where”o02 and 8, are constant quantities independent of the parameter p, 

it is apparent that it is impossible to construct between the functions 

@ and Q” such relations as were obtained in the quasi-stationary problems 

for an absolutely elastic body. 

In the case of an instantaneous source of heat, assuming that the 

functions A(t) and /i(t) are expressed by means of the sam; exponential 
relation as before, and with the same relaxation time, t , wt2 find that 

the solution of the equation (3.16) has the form 

8 (PI esp t-R I’%% -exp I- Rpa (p)] @@*PI = -4xxpB (PCS? (p) - x-1) 

( 
(3.20) 

uqK,p)=A(+ -&)[exp(-RfC)-cxP[-- VBP(P-t41] 

( A= > (3.21) 

Carrying out an inverse Laplace transformation, we obtain 
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---((R,t;71)--((R,t)-tK(R,t; E,?) (3.22) 

Here the following definitions apply: 

L (R, t; 71) = + eqt [exp (- R I/t) erfc (& - m) + 

i-exp(Rfz)erfc(&+V%)] 

N(R,t)=[exp(-+)-l- 

f- cRr@- S exp(-%)“(~~~dv]‘l(t-RR~ 

RVP 

IqR,t;e,$=jh(R, t-*)-$(r;e/q)dr 
0 

where 

h (R, t) = exp (- +) I, (1/2s VP - R’S) -q (t - R v/p, 
and also 

For determining the stresses aij, one more function is necessary: 

lJPl4 (y (R* PI = G (PI 0 WV P)> 
'Ihe function {/I (R, p) has the form 

JI, (R, P) = 4 (pGe - p&T) [ exp (- R l/f) - exp (--- R P%(m) 1 

( A, = aoh 
47+H(?$_E) ) 

Carrying out the inverse Laplace transformation, we obtain 

+(I{, t) = A,[L(fi,t;-E)- L(R,t; 'i)+ K(fi,t, E,- E)--(R,l, E,$](3.23) 
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We determine the stresses by use of the formula 

665 

Determination of the quasi-static thermal stresses in a visco-elastic 

half-space introduces, in principle, no great difficulties. First the 

stresses u.- are determined for an infinite medium, as was demonstrated 

in Section'$, and h h b d t en t e oun ary conditions at the plane z = 0 are 

satisfied by superposition of the state of stress u. .‘<- ‘Ihe stresses 

C..(x p)can be expressed by use of the function 4 , 
tlZ fikmulas for X_._.(x_, 

’ whereupon we obtain 

p) from equations (2.61, in which in place ofy 

we set h'(p)/2[ X'Ci) 4- pm'(pII, and in place 

/l’.(p). 
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